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Abstract— In this Juxtaposition report, we revisit the original
paper by Popovski et al. [1] and formulate the same problem
as a Markov decision process (MDP). The solution approach
is inspired by the classic river crossing problem [2] and its
connection to the Bellman equation [3]. Due to the information
structure of the problem, a stochastic decision making scenario
is presented and the Bellman equation is presented.

I. INTRODUCTION

Optimal control theory serves as a powerful tool for ana-
lyzing and interpreting a variety of problems in other fields
e.g.: machine learning, reinforcement learning, filtering, bio-
mechanics [4], [5], [6], [7]. In information theory, stochas-
tic control has been used to prove a coding theorem [8]
by optimizing directed mutual information and solve more
general frameworks as shown by Tatikonda and Mitter [9].
The duality between stochastic optimal control and feedback
capacity is stated in [10], [11].

In this report we review the paper by P. Popovski et
al. [1] from an optimal control point of view. Intuitively,
one may assert that delivering information under energy
constraints have some analogies with the classical river
crossing problem, whose detailed solution and connection
to the dynamic programming are well known [2], [3]. In-
stead of people crossing a river, data bits flow through a
channel throughout some discrete time-horizon subject to
given energy constraints. However due to the information
structure of the problem—where the message of a node is
unknown to the other node—classical dynamic programming
is insufficient in finding the optimal policy. Rather, the
problem is viewed as a stochastic optimization problem and
the Bellman equation is constructed which yields the optimal
transmission policy as a solution.

The MDP formulation not only provides a new insight to
the problem, but can be used to derive optimal transmission
schemes when each node can transmit more than one bit
per channel usage. Two immediate useful applications are
(1) when nodes are using some quantum channel where
qubits, instead of bits, are exchanged, or (2) when each
node can send several different quantized energy levels in
addition to the information bit. The latter case can be thought
of as transmitting some q-ary letter {0, . . . ,q− 1} for each
channel usage with each letter in {1, . . . ,q−1} representing
the information bit 1 while conveying distinct energy levels.

The rest of the paper is organized as following: In Sec. II,
we present the problem of jointly transferring energy and
information and summarize the main result of [1] for the
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noiseless and lossless case. We also review the river crossing
problem and its solutions by following [3], [2] but in modern
viewpoint. In Sec. III, we formulate the MDP.

Notations: We denote the set of integers [m] ∶= {1, . . . ,m} for
any positive integer m, and [0,m] ∶= {0, . . . ,m}. The set of
binary bit is denoted as X = {0,1}. The sequence of variable
is succinctly denoted by a superscript: Xn = (X1, . . . ,Xn).

II. BACKGROUND

A. Interactive Joint Transfer of Energy and Information

We follow [1, Sec. 2]. Consider noiseless-binary commu-
nication model between 2 nodes: At each time step denoted
by t ∈ [n], node 1 and 2 can have discrete energy level
(U1,t ,U2,t) ∈N2 and transmit single bit to each other. If one
node has nonzero energy, it can transmit either 0 or 1, while
the “1” bit transfers unit energy to the other node. If a node
is out of energy, it can only transmit “0” bit. The channel
and energy transfer are noiseless and lossless, respectively.
(n,R1,R2,U) code is defined by following:

1) U1,t +U2,t = U for all t ∈ [n], i.e. the total energy is
conserved;

2) Node 1 has a message M1 ∈ [2nR1] and the source
distribution is assumed to be uniform;

3) Node 1 has a encoding function f1,t ∶ [2nR1]×X t−1→X
that maps the message M1 and received sequence of
bits from node 2 denoted by {Y1, . . . ,Yt−1} to the next
transmitted bit Xt ;

4) Node 1 has a decoding function g1 that maps its trans-
mitting message M1 and history of received sequence
{Y1, . . . ,Yn} to the estimated message M̂2 ∈ [2nR2];

5) Node 2 also has message, encoder and decoder with
similar manner.

Under these assumption, we also have a system dynamics
for node 1 by:

U1,t+1 = (U1,t −Xt)+Yt , ∀t ∈ [n−1] (1)

and U2,t =U −U1,t . A rate pair (R1,R2) are jointly achiev-
able for given fixed energy capability U if there exists
an (n,R1,R2,U) code that achieves asymptotically 0 error
probability for sufficiently large n.

B. Main results from Popovski [1]

Special case: If U = 1, the optimal strategy achieves sum
rate R1+R2 = 1 by time-sharing scheme. Each node encodes
its message into binary sequences with equal portion of
“1” and “0”. When one node has energy, then it transmits
the codewords through the channel until codeword “1” is



transmitted and energy is delivered to the other node. Then
the channel is always active until both node finish their
transmission and achieves sum-rate 1.

Achievability: The Achievable region is given by the fol-
lowing proposition [1, Prop. 1].

Proposition 1 (Inner bound): The rate pair (R1,R2) satis-
fying

R1 ≤
U

∑
u=1

πuh2(p1∣u)

R2 ≤
U

∑
u=1

πuh2(p2∣u)

where h2( ⋅) is the binary entropy function and p j∣u is some
parameters take values in (0,1), for j = 1,2, u ∈ [0,U] with
p1∣0 = p2∣U = 0. πu is the solution to the following recursion:

πu = πu(φ
u
1,1+φ

u
2,2)+πu−1φ

u
1,2+πu+1φ

u
2,1 (2)

with ∑U
u=1 πu = 1. π−1 = πU+1 = 0 by definition. The coeffi-

cients φ
u
i, j is the (i, j) element of the following matrix:

φ
u ∶= ((1− p1∣u)(1− p2∣u) (1− p1∣u)p2∣u

p1∣u(1− p2∣u) p1∣u p2∣u
)

The basic idea of proof utilizes “rate-splitting” by con-
structing U distinct codebooks for each energy level u and
transmitting all of them. The overall rate is determined by
the size of product space of U codebooks. The proof sketch
is summarized in Appendix A.

Converse: The converse part seeks the necessary condition
of capacity region for given U . The following proposition [1,
Prop. 2], of which proof appear in the Appendix B, illustrates
the result:

Proposition 2 (Outer bound): If the rate pair (R1,R2) is
jointly achievable, then there exists a U-dimensional proba-
bility simplex πu and a joint probability distribution on X 2

for each u ∈ [0,U] that satisfies φ
0
1,0 = φ

0
1,1 = 0 and φ

U
0,1 = φ

U
1,1 =

0, and the recursion (2) and following set of inequalities are
satisfied:

R1 ≤
U

∑
u=0

πuH(X1∣u ∣X2∣u)

R2 ≤
U

∑
u=0

πuH(X2∣u ∣X1∣u)

R1+R2 ≤
U

∑
u=0

πuH(X1∣u, X2∣u)

where binary random variables (X1∣u,X2∣u) ∼ φ
u.

Remarks: [1, Fig. 2] presents the numerical result that the
achievable rate pair with the tightest choice of p j∣u and
necessary upper-bound are reasonably close. Also it is noted
that the optimized proportion p j∣u is ordered in u and satisfies
symmetry in j, that is, p1∣u = p2∣U−u. Intuitively, this coding
strategy utilizes more fraction of “1” if a certain node has
relatively high energy level.

C. Dynamic programming and river-crossing problem

The classic “Cannibals and Missionaries” puzzle is con-
cerned with finding the fastest schedule in which 3 cannibals
and 3 missionaries can cross the river using one boat that
can carry at most 2 people at a time. During the journey,
the number of cannibal must not exceed the number of
missionaries in either side of the river. R. Bellman gave
a generalized mathematical formulation in [3]. Denote the
number of cannibals and missionaries on one side of the
river as m1 and n1 respectively. Likewise, m2 cannibals
and n2 missionaries are on the other side of the river. The
safety constraints are denoted by R1(m1,n1) ≥ 0 for bank
1, R2(m2,n2) ≥ 0 for bank 2, and R3(x,y) ≥ 0 inside the
boat. The capability constraint of the boat is restricted by a
constant k. It is observed that the original objective—finding
the fastest schedule—may not be well posed, because the
safe-crossing may not be possible, and therefore the objective
is chosen to seek the maximum number of people that can
be transported within a given time horizon.

The optimal control formulation is as follows: Suppose the
boat is at bank 1 at the beginning of the stage. The control
variable is given by a 4-tuple u = (x1,y1,x2,y2); at each stage
the boat carries x1 cannibals and y1 missionaries to bank 2,
and then carries x2 cannibals and y2 missionaries back from
bank 2. A value function fN(m1,n1) is defined to be the
maximum number of people on bank 2 after N stages. Note
that m2 and n2 can be obtained as long as the total number
of each group is preserved. The Bellman equation is given
by

fN(m1,n1) =max
u

fN−1(m1−x1+x2,n1−y1+y2)

subject to the following constraints:

x1 ∈ [m1], y1 ∈ [n1], 1 ≤ x1+y1 ≤ k

x2 ∈ [m2+x1], y2 ∈ [n2+y1], 1 ≤ x2+y2 ≤ k

R1(m1−x1,n1−y1) ≥ 0, R1(m1−x1+x2,n1−y1+y2) ≥ 0

R2(m2+x1,n2+y1) ≥ 0, R2(m2+x1−x2,n2+y1−y2) ≥ 0

R3(x1,y1) ≥ 0, R3(x2,y2) ≥ 0

For N = 0, the value function is trivially f0(m1,n1) =m2+n2,
so we can solve for the optimal control and value function
in a recursive manner.

The original safe-crossing objective reduces to finding the
minimal N such that

fN(m1,n1) =m1+n1+m2+n2

If such N and (m1,n1) exist, the optimal safe crossing puzzle
can be solved provided that the initial condition is (m1,n1).



D. The optimal schedule

In I. Pressman and D. Singmaster’s 1989 paper [2], the
optimal solution to another version of the river crossing
problem, namely “jealous husbands” is presented, as well
as the cannibals and missionaries problem. In the jealous
husband problem, there are n couples seeking the fastest way
to cross a river, and the constraint is that no wife can be
with another man without her husbands. In fact, if n ≥ 4, the
constraint cannot be held. The practicable problem assumes
the existence of an intermediate island in which the crossing
under the constraints becomes possible.

The first main result is that the minimum number of
crossings required for the jealous husbands problem with
n ≥ 4 couples and a 2-people boat is given by 8n−6 if the
boat always has to drop an anchor at the island. The proof is
simple: the least number of steps to carry 2n people is given
by 8n− 6 without constraints. Indeed, it can be achieved
by De Fontenay’s method which consists of 9-step initial
move and repeating 8-step intermediate move for n−3 times
followed by a 9-step final move1.

Pressman and Singmaster also present that if the direct trip
from one bank to the other is permitted, the optimal number
of crossing is 4n+1 if n > 4. The algorithm consists of 4-step
initial move and repeating 4-step intermediate move for n−2
times and 5-step final move. Similar to the previous case, the
optimality proof employs the fundamental lower bound and
shows that it is impossible to improve.

The similar results for cannibals and missionaries problem
is also presented: Consider n cannibals and n missionaries
crossing the river which has an island, using a boat which
can carry 2 people. The optimal number of steps to safely
cross the river without bank-to-bank travel is 8n−6; 4n−1
if bank-to-bank travel is allowed.

III. MDP FORMULATION

A. Motivation of considering the dynamic programming

The main contribution of [1] is the suggestion of a
communication scheme which achieves the optimal rate
given energy constraints. The communication scheme with
constraint seems to have an analogy with the river crossing
problems: Instead of people crossing the river, data bits are
transmitted through the channel, subject to given energy
constraint. If the crossing under constraint is possible within
n+o(n) steps(cf. II-C) for every combination of codewords,
then it might be relevant measure of rate.

However, it turns out that the naive implementation of river
crossing idea will not work, because each node has only
information of its message and incoming signal up to the
previous time step. Therefore, the optimal travel scheduling
like II-D is not feasible, but stochastic control setting must
be considered.

Recall the rate-splitting and codebook multiplexing strat-
egy: Each node j uses a codebook C j∣u ∀u ∈ [U] comprising
p j∣u fraction of “1”. Given the codebook with optimized

1We do not quote the detailed algorithm for our purpose of presentation.
For details, see [2]

p j∣u value, approximately the best possible sum-rate in the
channel is obtained. In this section we derive that rate-
splitting is optimal as a consequence of an MDP formulation.

B. Construction of MDP

From heron we focus on node 1 trying to maximize
the information being sent over n channel uses. The same
analysis holds for node 2 by symmetry. Before commu-
nication, the codebooks are generated as in Appendix A
and revealed to both nodes. The state space is given by
possible energy levels U = {0, . . . ,U} of node 1. For each
state u there is an associated action space Au = {0,1}∀u > 0
and A0 = {0}. Given a codeword Cm in the multiplexed
codebook C the node is to transmit, the goal is to maximize
the mutual information between the codeword Cm and the
bits transmitted over n channel uses Xn

max
Xn

I(Xn;Cm). (3)

Value function: There is an associated value function Jn
t (u)

which is the maximum mutual information achieved for the
optimal sequence of actions Xn

t
∗ = (X∗

t , . . .X
∗
n ) when the

node has energy level u and has been transmitted X t−1:

Jn
t (u,xt−1) = max

Xt ,...,Xn
I(Xt , . . . ,Xn;Cm∣Ut = u,X t−1 = xt−1) (4)

Remark: Recall that the energy of node 1 follows the

difference equation (1):

Ut+1 = (Ut −Xt)+Yt

Thus the information from the incoming signal is captured
by the current energy level and the history of actions that
has been taken.

The following theorem describes the MDP formulation.
The proof appears in the Appendix C

Theorem 1 (Bellman equation): The value function (4)
satisfies the Bellman equation

Jn
t (u,xt−1) = max

xt∈Au
H(Yt ∣U1 = u,X t−1 = xt−1)

+
U

∑
v=0

P(Ut+1 = v∣Ut = u,X t = xt)Jn
t (v,xt)

where xt = (xt−1, x), and Yt is the signal from node 2.

It now remains to determine the transition probability,
where the uncertainty lies in the fact that at time t, we are not
aware of what the node 2 will send. Node 1 can determine
the set of codewords node 2 is sending from at time t by
looking at the state-action histories observed by node 1, i.e.
given (yt

1,u
t
1) node 1 can determine {c ∈ C2 ∶ yt

1 matches
yn

1(c) up to index t}. Notice for each code word c ∈ C2,
there may be multiple encodings yn

1(c) due to the fact that
node 2 may have sent non-informational 0’s because it lacked
energy in some instances. If we assume that codewords are
uniformly distributed, P(Ut+1∣Ut ,Xt) is given by the fraction
of codewords which contain a “1” in the possible codewords.



C. Solving the MDP

We now have a well-defined finite horizon MDP. This
can be solved by value iteration. Here we show some initial
conditions that must be satisfied by the value function.

1) Jn
t (0) = P(Yt = 0)Jn

t+1(0)+P(Yt = 1)Jn
t+1,(1) ∀t ∈ [n]

2) Jn
n(u) = 0, ∀u

3) The Bellman equation for points other than the initial
condition:
Jn

t (u) =H(Xt ∣Ut = u)
+max{Jn

t+1(u)P(Yt = 0)+Jn
t+1(u+1)P(Yt = 1),

Jn
t+1(u−1)P(Yt = 0)+Jn

t+1(u)P(Yt = 1)}
Once Jn

t is obtained, the optimal transmitting scheme follows.
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APPENDIX

A. Proof of Prop 1

Let C j∣u be the codebook for each node j = 1,2 and each
energy level u ∈ [U]. Each codebook C j∣u is made of binary
sequences approximately a fraction p1∣u of "1" symbols
in each codewords. The message is represented by a U-
dimensional vector (m j,1, . . . ,m j,U) for each node j = 1,2.
Suppose each element take value from m j,u ∈ [K j,u]. At each
time step, node j send the next codeword corresponding to
the current energy level U j,t . For node 1, define an ordered
set

τu = {t ∈ [n] ∣U1,t = u}, (5)

τu represent the set of time instances when the state takes
value at u. For each u ∈ [U], node 2 takes the first ∣τu∣
element from the codeword sequence corresponding to m1,u.
Node 2 decodes the message by finding m1,u ∈ [K1,u] that
satisfy C1,u(m1,u)k =X(τu)k for all k ∈ [∣τu∣]. Node 2 estimates
received signal as x̂1,u = 1 if it is not uniquely determined
due to ∣τu∣ is not large enough.

The error event is union of {∣τu∣ < ∣C1,u(m1,u)∣} and two
different messages have the same encoding. The proof is
achieved by showing that these event has asymptotically zero
probability as n ↑∞ under given assumption.

B. Proof of Prop 2

nR1 =H(M1) =H(M1∣M2,U1,1 = u1,1)
=H(M1,Xn

1 ,U
n
1 ∣M2,U1,1 = u1,1)

=H(Xn
1 ,U

n
1 ∣M2,U1,1 = u1,1)

=
n

∑
i=1

H(X1,i,U1,i∣X i−1
1 ,U i−1

1 ,M2,U1,1 = u1,1)

=
n

∑
i=1

H(U1,i∣X i−1
1 ,U i−1

1 ,M2,U1,1 = u1,1)

+H(X1,i∣X i−1
1 ,U i−1

1 ,M2,U1,1 = u1,1)

=
n

∑
i=1

H(X1,i∣X i−1
1 ,U i

1,M2,U1,1 = u1,1)

≤
n

∑
i=1

H(X1,i∣U1,i,X2,i)

=H(X1∣U1,X2,Q)
≤H(X1∣U1,X2)

Variable Q uniformly distributed in the set [1,n] and
independent of all other variables, along with X1 = X1Q,
X2 = X2Q, and U1 =U1Q. Calculating nR2 is also has same
reason of solving nR1 equation.

n(R1+R2) =H(M1,M2)
=H(M1,M2,Xn

1 ,X
n
2 ,U

n
1 ∣U1,1 = u1,1

=
n

∑
i=1

H(U1,i∣X i−1
1 ,X i−1

2 ,U i−1
1 ,M2,U1,1 = u1,1

+H(X1,i,X2,i∣X i−1
1 ,X i−1

2 ,U i
1,M2,U1,1 = u1,1

≤H(X1,X2∣U1)

C. Proof of Theorem 1

Denoting Yt the bit sent by the opposing node at time t, the
mutual information can be written in the form of Dynamic
Programming:

I(Xn
t ;Cm∣Ut = u)
=H(Xn

t ∣Ut = u)+H(Cm∣Ut = u)−H(An,Cm∣Ut = u)
=H(Xn

t ∣Ut = u)+H(Cm∣Ut = u)−H(Cm∣Ut = u)
−H(Xn

t ∣Ut = u,Cm)



(a)= H(Xt ∣Ut = u)−H(at ∣Ut = u,Cm)+H(Xn
t+1∣Ut = u,Xt)

−H(Xn
t+1∣Ut = u,Cm,Xt)

=H(Xn
t+1,Ut+1∣Ut = u,Xt)+H(Cm∣Ut = u,Xt ,Ut+1)

−H(Xn
t+1,Cm,Ut+1∣Ut = u,Xt)

=H(Xn
t+1∣Ut = u,Xt ,Ut+1)+H(Ut+1∣Ut = u,Xt)

+H(Cm∣Ut = u,Xt ,Ut+1)−H(Xn
t+1,Cm∣Ut = u,Ut+1,Xt)

−H(Ut+1∣Ut = u,Xt)
=H(Xn

t+1∣Ut+1)+H(Yt ∣Ut = u)+H(Cm∣Ut+1,Xt)
−H(Xn

t+1,Cm∣Ut+1,Xt)−H(Ut+1∣Ut = u,Xt)
(b)= H(Yt ∣Ut = u)+H(Xt ∣Ut = u)

+∑
v

P(Ut+1 = v∣Ut = u,Xt)I(Xn
t+1,Cm∣Ut+1 = v,Xt)

where (a) the second and third terms of the left hand
side cancel and the right hand side follows from using
the chain rule for the remaining entropy terms, and (b)
I(X ;Y ∣Z) = H(X ∣Z)−H(Y ∣Z)−H(X ,Y ∣Z) and H(X ,Y ∣Z) =
H(Y ∣Z)+H(Y ∣X ,Z) gives the result. The last line follows
because given a codeword and the energy state, the bit to be
sent is deterministic.

In order to maintain the recursive form, take conditioning
on X t−1 everywhere closes the proof.


